Autodesk Fusion 講習会

ものづくりスペース瀬谷

目標

- 簡単な雑貨や部品の設計
- 3D プリンター(FDM 方式)での造形

日程

- 第 1 回 @ものづくりスペース瀬谷 Fusion とは/インストール/設計操作の概要/3D プリンターでの造形デモ
- 第2回 オンライン 設計の基礎 (スケッチ、押し出し)
- 第3回 オンライン 設計の基礎(回転、穴)
- 第4回 オンライン 設計の応用(平面の作成、スイープ、ロフト)

目次

第1章 Autodesk Fusion とは	4
1. 特徴	4
2. ライセンス	4
3. インストール方法	5
4. 3D 画面でのマウス操作方法	16
5. 基本的な操作	16
6. 画面構成	17
第2章 設計の考え方	19
1. 基本の流れ	19
2. ワード集	19
第3章 造形	20
1. 3Dプリンター	20
2. レーザー加工機	21
第4章 スケッチ	22
1. 基本的なスケッチ	22
2. 拘束	23
第5章 フィーチャ	25
1. 基本的なフィーチャの作成	25
2. フィーチャの修正	27
3. フィーチャ作成後のスケッチ編集	27
第6章 スケッチ (応用)	28
1. フィーチャに属する平面の選択	28
2. 高度な平面選択	28
第7章 フィーチャ (応用)	30
1. 重なったフィーチャの操作	30
2. ロフト	30
3. スイープ	32
4. 穴	32
5. シェル	33
第8章 コンポーネント	34
1. アップロード	34
2. コンポーネントの挿入	35
第9章 その他の話題	36
1 距離・角度の測定	36

2.	矩形上パターン	37
3.	円形状パターン	37
4.	(スケッチの) 投影	38
5.	テキストのスケッチ	39
6.	参考図書・動画	40

第1章 Autodesk Fusion とは

1. 特徴

Fusion は、オートデスク社(米)が開発している3次元CADソフトウェアです。 他社の3次元CADソフトウェアと比較して以下のような特徴があります。

- ✓ わかりやすい画面構成
- ✓ 履歴管理機能で操作をさかのぼれる

本講習では扱いませんが、レンダリング機能、アセンブリ機能、解析機能など、高度な CAD機能も備わっています。

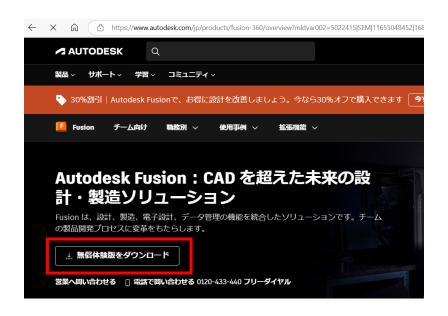
2024 年 1 月に「Fusion360」から「Autodesk Fusion」に名称変更しました。本資料では Fusion と表記します。

2. ライセンス

以下オートデスク社ホームページより抜粋します。

個人用(趣味や個人的な利用)であれば無償で利用できます。この場合、「機能限定版」となりますが、基本的な CAD 機能はほとんど利用可能です。

注意点として、保存できる CAD データは無制限ですが、編集可能な CAD データは 10個までとなっています。そのため、完成して編集が不要となった CAD データは「読み取り専用」にしておいてください。



3. インストール方法

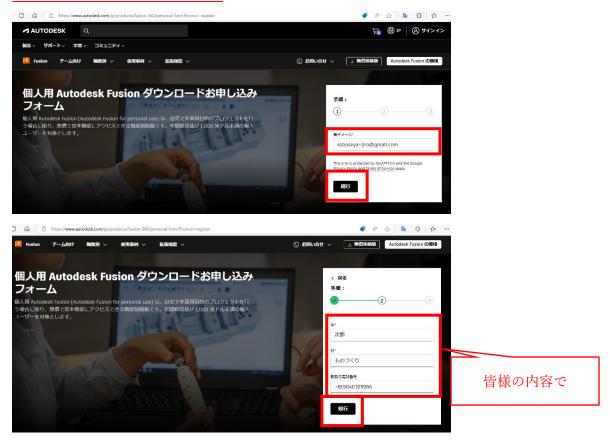
個人用 Fusion の会員登録、ダウンロード、インストールの手順は以下の通りです。

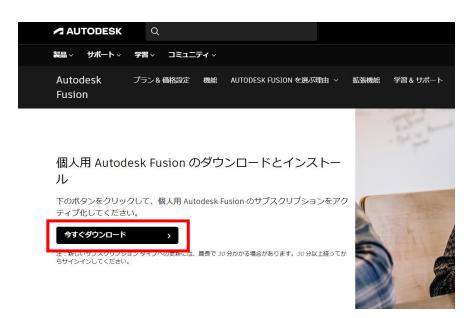
ブラウザを使い、Googleで「fusion」と検索します。

個人用 Autodesk Fusion とAutodesk Fusion の比較

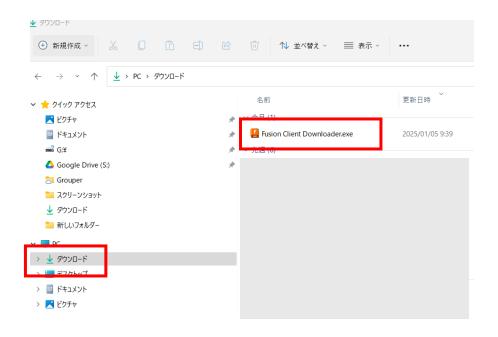
すでに Autodesk のアカウントをお持 ちの方は、電子メール入力の上、「次 へ」からログインしてください。

前画面で入力した電子メールに Autodesk からメールが届いています。メーラーの「電子メールを確認」をクリックします。※メーラーはスマホでも構いません。

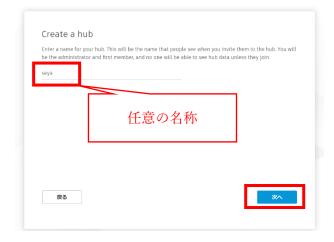


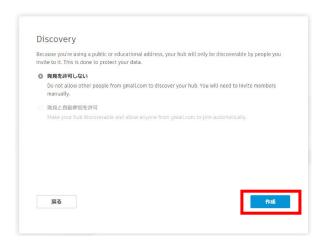

←この画面は閉じてください。

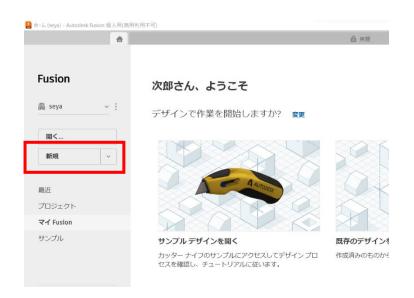
パソコンのブラウザーに戻って、電子メールを入力の上、「続行」をクリックします。



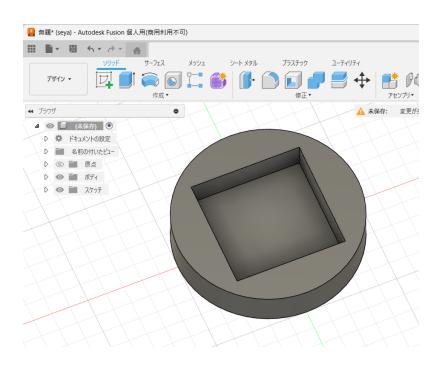
ダウンロードが完了したら、<u>**エクスプローラーで**</u>「ダウンロード」フォルダの「Fusion Client Downloader.exe」をダブルクリックします。



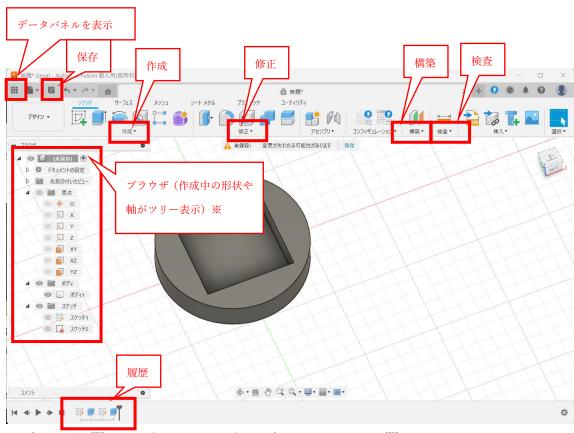

desk Fusion 個人用(商用利用不可)



その後のメッセージを確認し画面を進めると、Fusion の初期画面が開きます。

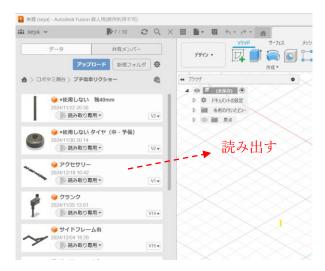


4. 3D画面でのマウス操作方法

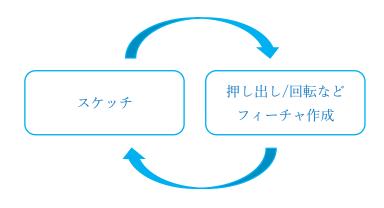

ズーム(拡大・縮小)	マウスホイール回転	
移動	ホイールボタンを押し込ん で動かす	
くるくる回す	Shift+ホイールボタンを押 し込んで動かす	SHIFT
要素の選択	左クリック	
コマンド呼び出し	右クリック	

5. 基本的な操作

以下の作成を一緒にやっていきましょう!


6. 画面構成

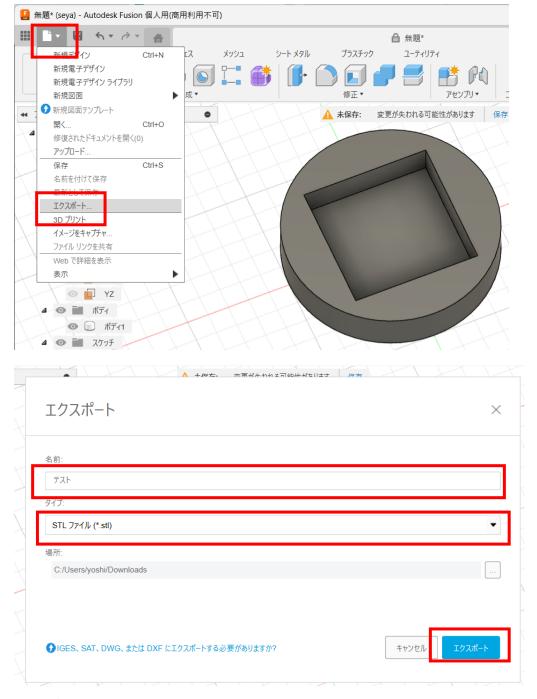
※ブラウザが閉じてしまっているときは、▷をクリックして開いてください。


Fusion で設計データを保存するとアプリケーション内(クラウドデータ)に保存されます。「プロジェクト」や「フォルダ」を使って、複数の設計データをまとめることができます。 ウィンドウが開きます

第2章 設計の考え方

1. 基本の流れ

2. ワード集


スケッチ	2D 図形を設計したもの	
	※同じ平面の操作は、同じスケッチに入れることを推奨します	
フィーチャ	押し出しや回転など、一つ一つの工程で作った 3D 形状	
ボディ	3D形状のかたまり	
コンポーネント	複数のボディが含まれたまとまり	
アセンブリ	複数のコンポーネントが含まれた全体的なもの	

- スケッチとフィーチャの操作は、履歴に表示されます。
- 以下ボディ/コンポーネント/アセンブリの事例です。

ボディ	ボールペン本体、キャップ、芯
コンポーネント	ボールペン全体
アセンブリ	文房具セット (ボールペン、定規、修正液)

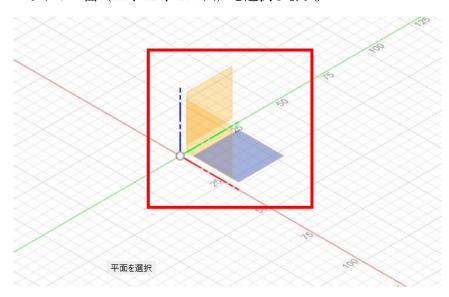
第3章 造形

1. 3Dプリンター

STL データができたら、ものづくりスペース瀬谷の3D プリンターの手順書がありますので、その通りに操作すれば造形できます。

2. レーザー加工機

スケッチの内容を使って、レーザー加工機で加工することができます。


DXF データができたら、ものづくりスペース瀬谷のレーザー加工機の手順書がありますので、その通りに操作すれば加工できます。

第4章 スケッチ

- 1. 基本的なスケッチ
- スケッチ編集画面の開き方
 「スケッチを作成」をクリックします。

いずれかの面 (XY、XZ、YZ ※) を選択します。

※例えば XY 面は、X 軸と Y 軸が接する面のことです。

例として、Z 軸に高さを作っていくような設計をするような場合、その底面となる XY 面を選択します。

② スケッチの種類

比較的よく使うスケッチは以下の通りです。

種類	作図パターン	メモ
線分		三角形など多角形を作成する際にも使
		えます。なるべく拡大すると使いやすい
		と思います。
長方形	2 点指定の長方形	
	3点指定の長方形	
	中心の長方形	
円	中心と直径で指定した円	
	2点指定の円	
	3点指定の円	
	2接線指定の円	
	3接線指定の円	
楕円		

同じ平面でのスケッチは、一つの作業履歴にまとめておくことを推奨します。(作業 履歴が分かれると、お互いのスケッチは基本的に関係付けられません)

2. 拘束

スケッチをする際に、例えば「この線とこの線は平行である」や「この点はこの線の 真ん中である」など条件付けすることを「<mark>拘束</mark>」と呼びます。

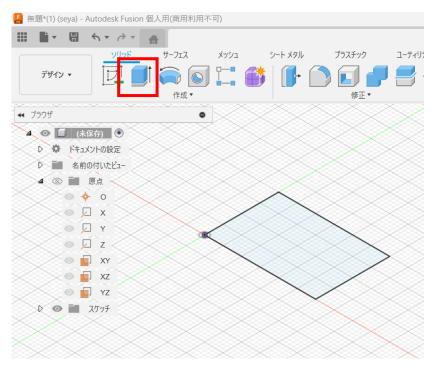
拘束をつけるメリット

● 設計変更がしやすくなる (スケッチ同士の関係性が正しく設定されていると、後から寸法を変えた場合でも形状がおかしくなりません)

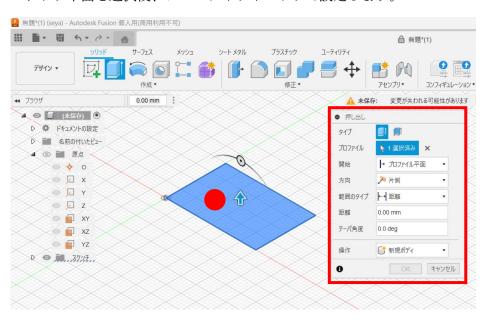
デメリット

- 学習に時間がかかる (さまざまな種類の拘束を覚えることは時間が必要です)
- 過剰拘束(拘束が多すぎると返って柔軟な設計の妨げとなります)
- 設計工数が増加する(気軽に設計しづらくなります)

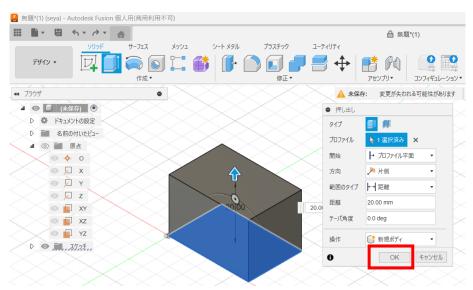
拘束がつけられるケースは以下2つです。

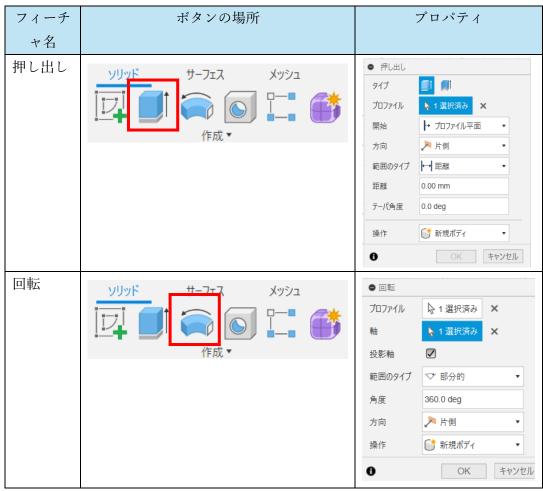

自動	例えば長方形を作成すると、自動的に「垂直」拘束が付きます
手動	設計者が意図的に付けます

拘束の種類

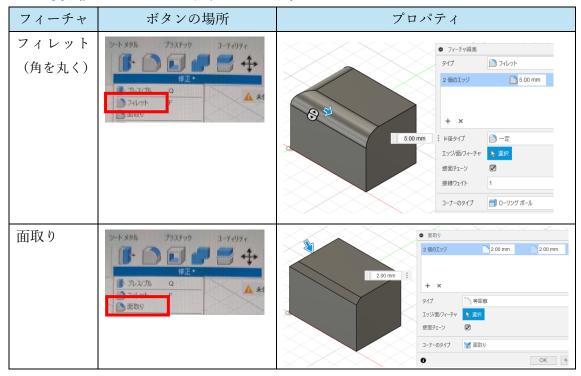

大分類	種類	メモ
幾何拘束	∜ 水平/垂直	線を水平または垂直に固定
	——————————————————————————————————————	2 つの点や、点と線を同じ位置に
	接線	曲線と他の線を1点で接触させる
	二 等しい	2 つの線のサイズを同一にする
	// 平行	2本の線を平行にする
	× _{直交}	2つの線を直角にする
	□ 固定/固定解除	位置と大きさを固定する
	△中点	点を線の真ん中に
	○同心円	複数の円や円弧の中心を同じにする
	一一直線上	点や線を同じ線上に並べる
	门对称	2つ以上の図形を対称にする
寸法拘束	長さ	線や、間隔の長さを設定する
	角度	線や軸同士の角度を設定する

第5章 フィーチャ

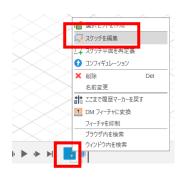

- 1. 基本的なフィーチャの作成
- ① フィーチャの作成方法 スケッチを作成後、スケッチを終了した後の画面で行います。


スケッチ平面を選択後、プロパティウィンドウで設定します。

「OK」をクリックします。


② よく使うフィーチャ作成

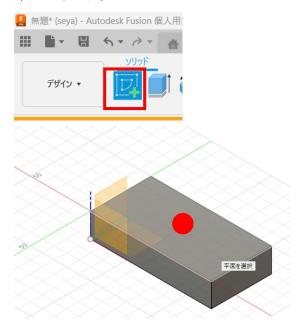
2. フィーチャの修正


Fusionでは、新たな物体が作成される操作は「作成」メニューに配置されており、一方、すでにある物体を編集する操作は「修正」メニューに配置されています。

よく使う修正メニューには以下があります。

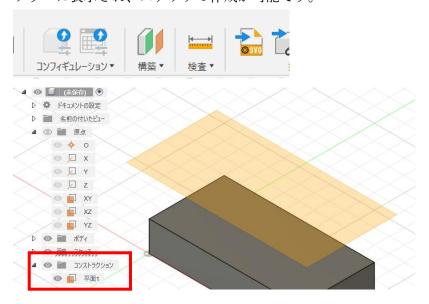
3. フィーチャ作成後のスケッチ編集

履歴を右クリックして、「スケッチの編集」をクリックします。



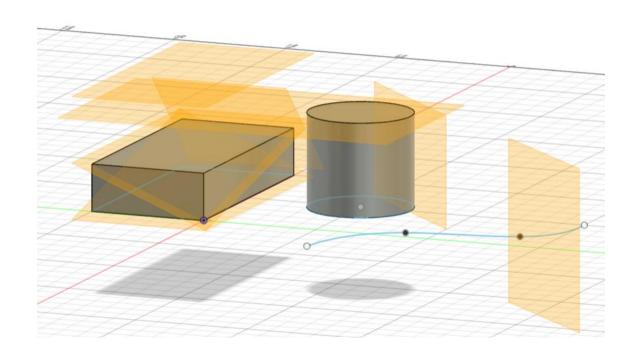
フィーチャを作成した後に、ベースになっているスケッチを編集するとフィーチャも変 形されます。

第6章 スケッチ(応用)


1. フィーチャに属する平面の選択

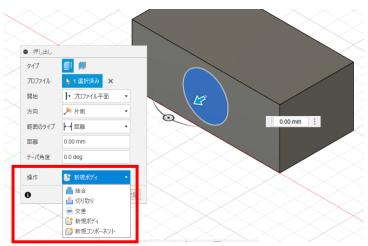
スケッチを作成する際に、作成済みフィーチャの面を選択すると、その平面のスケッチ編 集ができます。

2. 高度な平面選択


「構築」メニューからさまざまな方法で平面を定義することができます。定義した平面は ツリーに表示され、スケッチの作成が可能です。

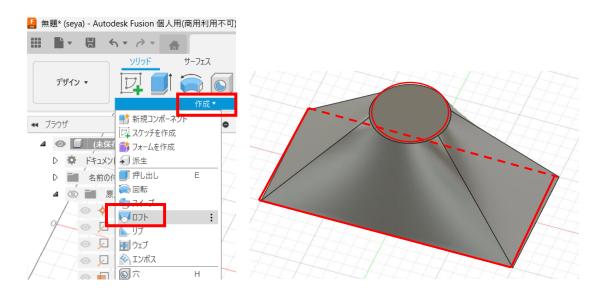
構築できる平面は以下の種類があります。

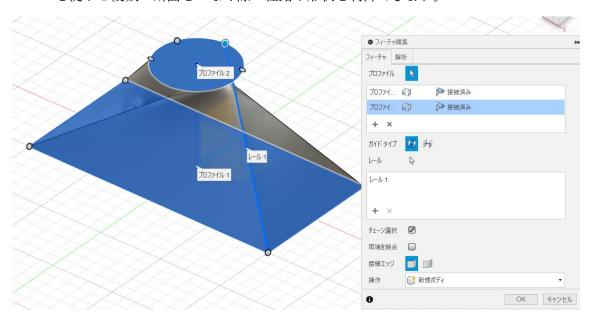
種類	説明
オフセット平面	既存の面から指定した距離だけ離れた位置に作成される平面
傾斜平面	特定の角度をつけて作成される平面。斜めの切断面や傾斜した
	構造を作るのに適しています。
接平面	曲面に接するように作成される平面
中立面	2 つの平行な平面の中間に作成される平面
2 つのエッジを通過す	指定された2つのエッジ(※)を通過するように作成される平
る平面	面。
3点を通過する平面	3つの点を通過するように作成される平面
点で面に接する平面	指定された点で既存の面に接するように作成される平面
パスに沿った平面	エッジ(※)やスケッチのパスに直交するように作成される平
	面


※エッジとは2つの面が交差する線

第7章 フィーチャ(応用)

1. 重なったフィーチャの操作


フィーチャを作成しようとしたときに既存フィーチャと重なる場合には、どのように影響するかを選択できます。「操作」という欄で選択します。

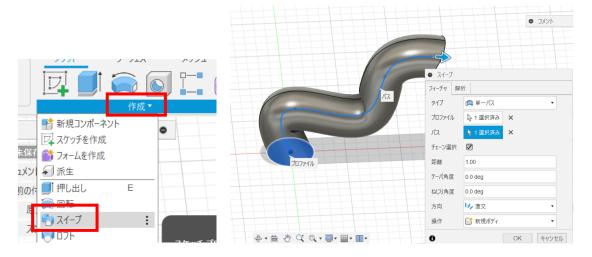

操作の種類	説明
結合	既存のボディに新しい形状を追加します
切り取り	既存のボディから指定した形状を削除します
交差	既存のボディと新しい形状の共通部分のみを残します
新規ボディ	独立した新しいボディを作成します
新規コンポーネント	新しいボディを別のコンポーネントとして作成します

2. ロフト

別々の平面に所属する、複数のスケッチをつないだフィーチャを作ることができます。

レールを使うと複数の断面をつなぐ際の経路や形状を制御できます。

ロフトは細かい設定が可能です。詳細は以下動画が詳しいです。(14分)

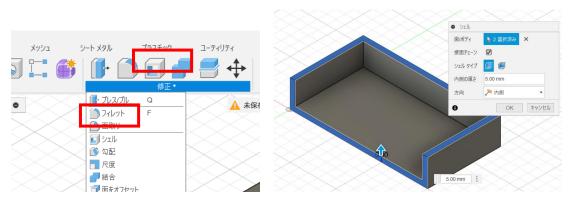

テルえもん CAD ルーム「【徹底解説】Fusion360-ロフト(ガイドレール、中心線、連続性、ウエイトなど)」

https://youtu.be/p8aDtynmKMM

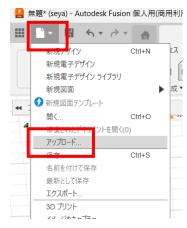
3. スイープ

スケッチの平面(プロファイル)を、指定した経路(パス)に沿って移動したフィーチャ を作成します。例えば、水道管のような形状を作ることができます。

4. 穴


穴の機能を利用すると、ねじ穴などを規格に沿って作成することができます。

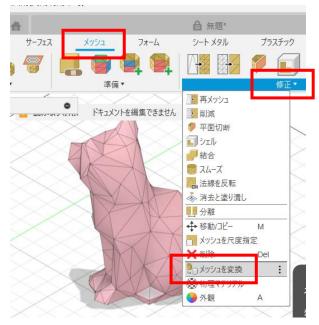
5. シェル


シェルを使うと、フィーチャの内部をくり抜いて均一な厚みの壁を作成します。 くりぬく壁を「面ボディ」欄で選択してください。

第8章 コンポーネント

1. アップロード

インターネットなどでは様々な立体データが公開されています。そのデータを Fusion に取り込んで使うことができます。



取り込んだファイルは、データパネルから開くことができます。

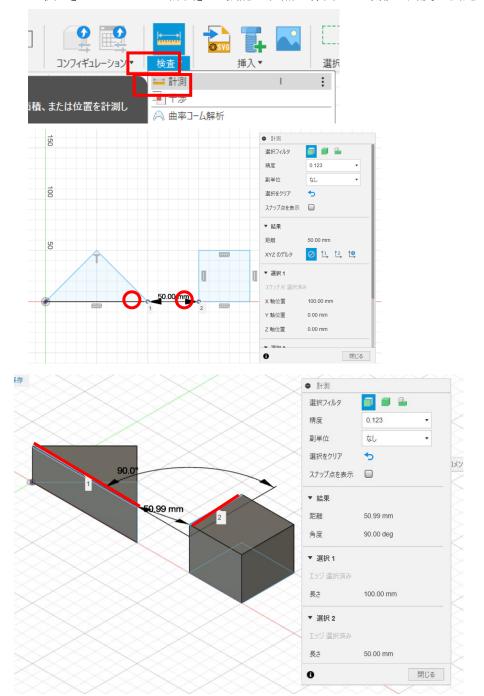
その後、「メッシュ」メニューの「修正」から「メッシュを変換」をクリックすると、これまで使っていた「ソリッド」メニューで編集することができます。

<メモ>

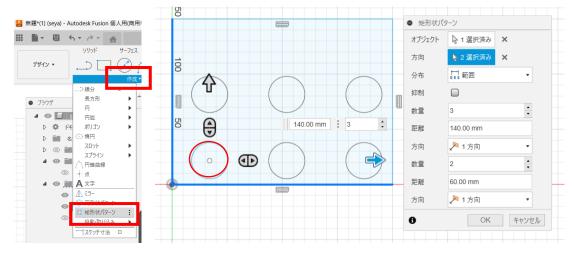
フィギアなどをアップロードした直後 は、形状が複雑すぎて、処理が大変に重 くなることがあります。このような場 合、メッシュの簡素化などの処理をする と改善されることがあります。

保存する場合、アップロード直後は「読み取り専用」になっていますので「編集可能」に 変更した後、保存してください。

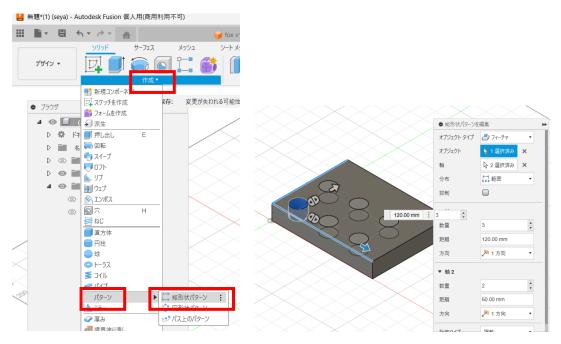
2. コンポーネントの挿入


現在設計しているデータに、他の設計データを取り込むことができます。 「挿入」メニューの「コンポーネントの挿入」で対象を選択します。

第9章 その他の話題

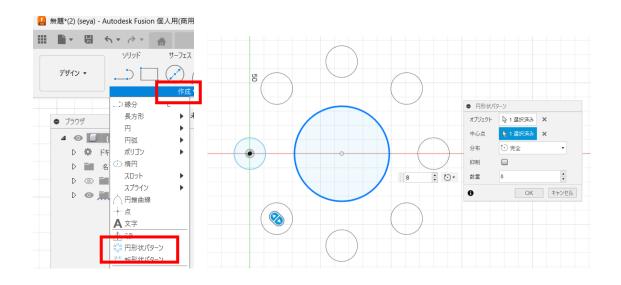

1. 距離・角度の測定

「検査」メニューの「計測」の機能で、点や線同士の距離や角度を測定できます。

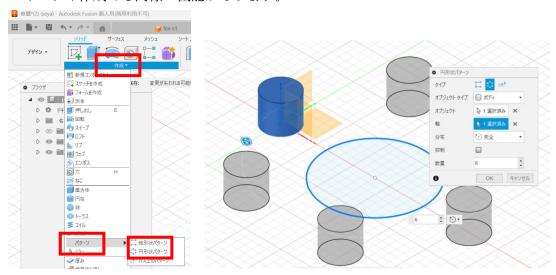


2. 矩形上パターン

スケッチ作成で、一つの形状を作成した後、指定した方向にコピーすることができます。 例えば、卵ケースのような形状を作ることができます。

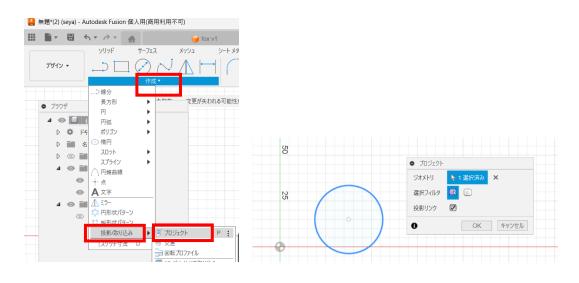


フィーチャ作成でも同様の機能があります。



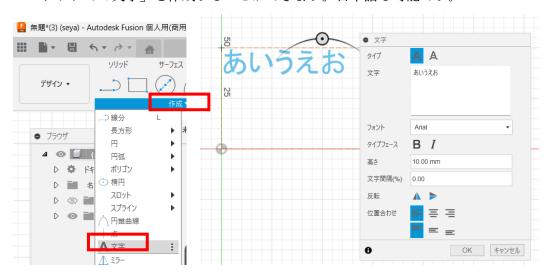
3. 円形状パターン

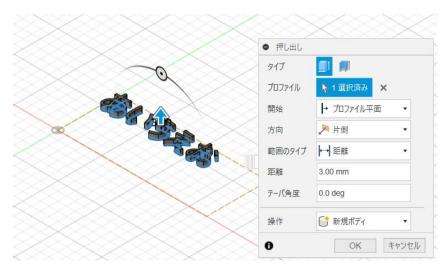
矩形上パターンと同様に、円形状にコピーすることもできます。



フィーチャ作成でも同様の機能があります。

4. (スケッチの) 投影


履歴が異なるスケッチの形状は、通常、参照することができません。「投影」することで それが可能になります。



5. テキストのスケッチ

スケッチで「文字」を作成することができます。日本語も可能です。

フィーチャ作成で、押し出すことで3Dになります。

6. 参考図書・動画

<書籍>

『Fusion360 操作ガイド ベーシック編:次世代クラウドベース 3DCAD (2023 年版)』

『Fusion 360 操作ガイド アドバンス編:次世代クラウドベ-ス 3DCAD (アドバンス編)』

<Youtube チャンネル(動画)>

3D Design & Make キャドラボ

https://www.youtube.com/@3ddesignmake272/videos

<ChatGPT など生成 AI>

ChatGPT などの生成 AI で、例えば以下のように要求すると教えてくれます。例)

「autodesk fusion のスイープを説明してください」 「autodesk fusion のスイープを説明した動画を教えてください」